Sampling method for semidefinite programmes with non-negative Popov function constraints
نویسندگان
چکیده
An important class of optimization problems in control and signal processing involves the constraint that a Popov function is nonnegative on the unit circle or the imaginary axis. Such a constraint is convex in the coefficients of the Popov function. It can be converted to a finitedimensional linear matrix inequality via the Kalman-Yakubovich-Popov lemma. However, the linear matrix inequality reformulation requires an auxiliary matrix variable and often results in a very large semidefinite programming problem. Several recently published methods exploit problem structure in these semidefinite programs to alleviate the computational cost associated with the large matrix variable. These algorithms are capable of solving much larger problems than general-purpose semidefinite programming packages. In this paper we address the same problem by presenting an alternative to the linear matrix inequality formulation of the nonnegative Popov function constraint. We sample the constraint to obtain an equivalent set of inequalities of low dimension, thus avoiding the large matrix variable in the linear matrix inequality formulation. Moreover, the resulting semidefinite program has constraints with low-rank structure, which allows the problems to be solved efficiently by existing semidefinite programming packages. The sampling formulation is obtained by first expressing the Popov function inequality as a sum-of-squares condition imposed on a polynomial matrix and then converting the constraint into an equivalent finite set of interpolation constraints. A complexity analysis and numerical examples are provided to demonstrate the performance improvement over existing techniques.
منابع مشابه
Sampling method for semidefinite programs with nonnegative Popov function constraints∗
An important class of optimization problems in control and signal processing involves the constraint that a Popov function is nonnegative on the unit circle or the imaginary axis. Such a constraint is convex in the coefficients of the Popov function. It can be converted to a finitedimensional linear matrix inequality via the Kalman-Yakubovich-Popov lemma. However, the linear matrix inequality r...
متن کاملConvex optimization problems involving finite autocorrelation sequences
We discuss convex optimization problems where some of the variables are constrained to be finite autocorrelation sequences. Problems of this form arise in signal processing and communications, and we describe applications in filter design and system identification. Autocorrelation constraints in optimization problems are often approximated by sampling the corresponding power spectral density, w...
متن کاملAn Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
متن کاملA Decomposition Algorithm for KYP-SDPs, Report no. LiTH-ISY-R-2919
In this paper, a structure exploiting algorithm for semidefinite programs derived from the Kalman-Yakubovich-Popov lemma, where some of the constraints appear as complicating constraints is presented. A decomposition algorithm is proposed, where the structure of the problem can be utilized. In a numerical example, where a controller that minimizes the sum of the H2-norm and the H∞-norm is desig...
متن کاملA path following interior-point algorithm for semidefinite optimization problem based on new kernel function
In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Control
دوره 87 شماره
صفحات -
تاریخ انتشار 2014